WATER QUALITY ASSESSMENT & NEW MONITORING APPROACH FOR JOHNSON COUNTY, KS

2019 Kansas City Urban Stormwater Conference
February 4, 2019
Johnson County Stormwater Management Program
 - Flood damage reduction projects
 - MS4 permit support to cities

Initial MS4 Phase II permits issued in 2004 in Johnson County
 - Water quality monitoring not required
 - Various water quality studies by USGS from 2002-2010
 - Contaminant source identification
 - Continuous Water Quality Monitoring
 - Biological Assessments
REGULATORY MONITORING REQUIREMENTS

- Regulatory requirement for water quality monitoring began in 2014
 - MS4 Phase II permits with TMDL responsibilities
- Permit dictated waterbodies sampled at the inflow and outflow boundaries of municipalities
- KDHE allowed us to propose an alternative for next permit term
- Stormwater Management Program 2016 Strategic Plan
 - Watershed based approach
 - Water quality improvement projects
USGS PRELIMINARY WATER QUALITY ASSESSMENT

MS4 SAMPLING APPROACH

- 2015 and 2016 Data Collection
- 27 Monitoring Sites (25 Stream, 2 Lake)
 - Discrete Sediment, Nutrients, Bacteria, Chlorophyll
 - 4 Wet-Weather Samples per Site (Rising Limb)
 - Base Flow Grab Samples during March
- 1 Monitoring Site
 - Continuous Temperature, DO, Conductivity, Turbidity, Nitrate
USGS PRELIMINARY WATER QUALITY ASSESSMENT

GENERAL RECOMMENDATIONS

- Watershed Approach
- Increase Sampling Frequency
 - Routine Baseflow Samples to Help Identify Patterns and Sources
 - Additional Stormwater Data
 - Conduct Statistical Evaluations
 - Identify Hot Spots and Data Gaps
 - Quantify Reduction Goals

Table 5. Summary of valuable and limiting attributes of the current water-quality monitoring program in Johnson County, Kansas, and possible approaches for making improvements.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Valuable attributes</th>
<th>Limiting attributes</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm sampler from many sites across the country</td>
<td>Data from multiple watersheds provide a country-wide perspective and allows comparison across the county.</td>
<td>Monitoring sites located along jurisdictional boundaries</td>
<td>Some locations are not suitable or of strategic value for addressing questions on source and BMP effectiveness.</td>
</tr>
<tr>
<td>Routine Baseflow Samples to Help Identify Patterns and Sources</td>
<td>Identifying sites with recurring elevated concentrations.</td>
<td>Storm samples from many sites located across the county</td>
<td>Presents logistical challenges for collection and analysis of large number of samples in short time frames associated with storm events.</td>
</tr>
<tr>
<td>Additional Stormwater Data</td>
<td>Data from multiple sites within a watershed allows some speculation about sources.</td>
<td>Fixed-stage samplers</td>
<td>Does not characterize conditions near storm hydrograph.</td>
</tr>
<tr>
<td></td>
<td>Consistent approach without unnecessary duplication of effort among municipalities.</td>
<td>Base-flow samples</td>
<td>Number of samples is too small to be representative of site conditions; does not describe temporal and hydraulic variability.</td>
</tr>
<tr>
<td></td>
<td>Facilities sampling at multiple sites during single event and allows data comparison during comparable flow conditions.</td>
<td>Additional stormwater data and models</td>
<td>Sample set too small to detect changes over time. Not likely to identify or characterize non-point sources.</td>
</tr>
<tr>
<td></td>
<td>Best method for characterizing variability in concentrations, loads, and hydrology.</td>
<td></td>
<td>Not likely to demonstrate BMP effectiveness.</td>
</tr>
</tbody>
</table>

Possible improvement approaches

- Redesign sampling network based on watersheds rather than jurisdictional boundaries.
- Incorporate nested designs (watershed, sub-watershed, and BMP scales) and adjust sampling frequency depending on site type.
- Collect a larger number of samples at fewer sites.
- Install continuous water-quality monitors at more sites.
- Incorporate different sampling methods such as nested, Lagrangian
 high-frequency and source-targeted approaches into sampling design.

Sampling for some period of time as a means demonstration.
EXISTING MONITORING SITES

- Discrete Water Quality (10+ samples since 2006)
 - 27 USGS TMDL Sites
 - 8 USGS Non-TMDL Sites
 - 27 EPA Sites
 - 6 KDHE Sites

- Continuous/Regression Models
 - 5 USGS Gages (4 discontinued)
 - 1 Active (Mill Creek at Johnson Dr.)

- 22 USGS Biological Sites (2002-2010)

- Hydrologic
 - 10 USGS Gages
 - 62 StormWatch Sites
USGS AND STORET DATA

- 303 Sites
- 27 TMDL Monitoring Sites
- 10 USGS Gage Stations
- ~8,100 Sampling Events
- >250,000 data records
- Collection Agencies
 - KDHE
 - EPA
 - USGS
 - Blue River Watershed Association
IMPAIRED WATERS IN JOHNSON COUNTY (TMDL & 303(D))

- Total Phosphorus ⭐
- Nitrate ⭐
- Eutrophication
- Dissolved Oxygen
- Biology
- Total Suspended Solids ⭐
- Sediment ⭐
- Bacteria ⭐
- Chloride
- Mercury
- Atrazine ⭐ MS4 TMDL Parameters
FLOW CONDITIONS

- 10 USGS gage stations
- Countywide average
- High Flow Samples: <60%
- Low Flow Samples: >=60%

Mill Creek at Johnson Drive (06892513)
E. COLI HIGH FLOW

High Flow

E. coli (cfu/100 mL)

PCR-A = 160
PCR-C = 427
E. COLI LOW FLOW
DATA GAPS

- Parameter Gaps
 - Limited chloride data
 - Nutrient & response linkages

- Spatial Gaps
 - Some significant streams unmonitored
 - Source characterization

- Temporal Gaps
 - Seasonality
 - Hydrologic conditions
 - Storm event variability
WATER QUALITY MONITORING PROGRAM CONSIDERATIONS

- Spatial Resolution
- Sampling Frequency
- Hydrologic Conditions
- Water Quality Parameters
- Watershed Model Calibration
RECOMMENDED WATER QUALITY MONITORING PROGRAM

- Station Types
 - Permanent, Long-Term
 - Supplemental Rotating Basin

- Sampling Approach
 - Routine, Ambient
 - Targeted Wet Weather

- Continuous Monitoring

- Budget Limitations
MONITORING RECOMMENDATIONS

MONITORING FREQUENCY AND PERIODS

- Monitoring Program Budget Tool to evaluate three monitoring options
- Routine monthly sampling
 - Permanent sites – All years
 - Rotating basin sites – During rotational year (5-year cycle)
- Wet weather sampling – 4x/year
 - Rotating basin sites – During rotational year (5-year cycle)
- Continuous monitoring site

Basin Recommendations

<table>
<thead>
<tr>
<th>Basin</th>
<th>Rotation Year</th>
<th>Station Name</th>
<th>Existing Station ID</th>
<th>Fixed</th>
<th>Rotating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Brush Creek at W 55th St</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brush Creek at Roe Ave</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock Cr nr State Park Rd</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turkey Creek at Lamar Ave</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turkey Creek nr 75th St</td>
<td>385937094420300T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Indian Creek at Marty St</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indian Creek at Overland Prkwy</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indian Creek at Pflumm Rd</td>
<td>38540309444320T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indian Creek at Stateline</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tomahawk Creek at Roe Ave</td>
<td>6893350T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Blue River at Hwy 69</td>
<td>6893080T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blue River at Kenneth Rd</td>
<td>6893100T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camp Branch at W 175th St</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coffee Creek at S Switzer Rd</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negro Creek at Mission Rd</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wolf Creek at W 179th St</td>
<td>384813094405300T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Bull Creek at W 199th St</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bull Creek at Hwy 35</td>
<td>6914950T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Little Bull Creek at W 215th St</td>
<td>384419094515600T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Martin Creek at Hwy 56</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring Creek at W 215th St</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Captain Creek at Hwy 10</td>
<td>SC638</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kill Creek at 95th St</td>
<td>6892360T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spoon Creek at W 135th St</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camp Creek at W 95th St</td>
<td>6892494T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cedar Creek at W 127th St</td>
<td>NA</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cedar Creek at W 83rd St</td>
<td>6892495T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clear Creek at Woodland Dr</td>
<td>390056094493200T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Little Cedar Creek at W 119th St</td>
<td>38545094514700T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Little Mill Creek nr Midland Rd</td>
<td>390026094485300T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mill Creek at Johnson Dr</td>
<td>6892513T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Mill Creek at 85th St</td>
<td>38582709490500T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mill Creek at 85th St</td>
<td>38582709490500T</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mill Creek at 85th St</td>
<td>38582709490500T</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>
BENEFITS OF WATER QUALITY MONITORING PROGRAM UPDATE

- Characterize overall water quality conditions in Johnson County
- Inform MS4 program controls that improve both dry and wet weather conditions
- Identify water quality priority subbasins, issues, and improvement opportunities
- Guide proactive protection measures
- Calibration of future watershed models