Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area

Bruce McEnroe, Bryan Young, Ricardo Gamarra and Ryan Pohl

Department of Civil, Environmental, and Architectural Engineering University of Kansas

Research Sponsors

- Kansas City Metro Chapter, American Public Works Association
- Johnson County Stormwater Management Program
- Kansas Department of Transportation
- City of Overland Park

Hydrologic Methods in KC-APWA Section 5600

- 1. Rational Method: Q = C i A (for watersheds ≤ 200 acres)
 - Q = discharge with specified AEP
 - C = runoff coefficient for specified AEP
 - i = rainfall intensity for specified AEP and duration equal to watershed's time of concentration (T_c)
 - A = drainage area

<u>Needs</u>

- Best available rainfall frequency estimates
- Calibrated relationship for estimating T_c
- Calibrated C values for urban green space and undeveloped land

Hydrologic Methods in KC-APWA Section 5600

2. Flood hydrograph simulation by NRCS methods

Rainfall: 24-hour NRCS Type II storm

Runoff: NRCS curve-number method

Streamflow hydrograph: NRCS synthetic unit hydrograph method

Inputs24-hour rainfall depth for specified AEPBasin lag time (TL)Runoff curve number (CN) for specified AEPDrainage area

<u>Needs</u>

Best available rainfall frequency estimates Calibrated relationship for estimating T_L Calibrated CN values for urban green space and undeveloped land Rainfall frequency information in Section 5600 is derived from: NOAA Technical Memorandum NWS HYDRO-35 <u>(1977)</u> for durations ≤ 60 minutes U.S. Weather Bureau Technical Paper 40 <u>(1961)</u> for durations > 60 minutes

NOAA published new rainfall frequency estimates for Kansas and Missouri in <u>2014:</u> in NOAA Atlas 14, Volume 8

on NWS Precipitation Frequency Data Server

NOAA's National Weather Service Hydrometeorological Design Studies Center Precipitation Frequency Data Server (PFDS)

NORA

FAQ

Glossary

Contact Us

Inquiries

USA.gov

Home Site Map News General Info State: Choose a state (or click map) - Load Homepage **Current Projects** D WA ME Precipitation MT ND Frequency (PF) ID 0 R MN **PF Data Server** S D MA PF in GIS Format CL WΥ · PF Maps PA IA. Temporal Distr. NE NV. 0H Time Series Data UT CA IL. IN PFDS Perform. MB KS **PF Documents** NC TN **Probable Maximum** AZ 0K NM Precipitation (PMP) AR **PMP Documents** MS AL BA 10 Miscellaneous -----TΧ Publications C) HI. **AEP Storm Analysis Record Precipitation** Selected Pacific Islands . Updated data available 75* Data update in progress PRAVI List-server

Precipitation Frequency Data Server (PFDS)

NOAA's National Weather Service

Hydrometeorological Design Studies Center

Precipitation Frequency Data Server (PFDS)

Rainfall estimates for certain durations and AEPs

PF tabular

PF graphical

Supplementary information

Print Page

	AMS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹								
Duration			Ar	nual exceed	ance probabi	lity (1/years)			
Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000
5-min	0.436	0.571	0.678	0.825	0.941	1.06	1.19	1.35	1.49
	(0.346-0.559)	(0.451-0.734)	(0.533-0.873)	(0.627-1.09)	(0.699-1.25)	(0.761-1.43)	(0.815-1.62)	(0.895-1.88)	(0.958-2.08)
10-min	0.638	0.836	0.993	1.21	1.38	1.55	1.74	1.98	2.18
	(0.506-0.819)	(0.661-1.07)	(0.780-1.28)	(0.919-1.59)	(1.02-1.83)	(1.11-2.09)	(1.19-2.38)	(1.31-2.76)	(1.40-3.05)
15-min	0.779	1.02	1.21	1.47	1.68	1.90	2.12	2.42	2.66
	(0.617-0.999)	(0.806-1.31)	(0.951-1.58)	(1.12-1.94)	(1.25-2.23)	(1.38-2.55)	(1.48-2.90)	(1.60-3.37)	(1.71-3.72)
30-min	1.09	1.44	1.71	2.09	2.38	2.69	3.00	3.44	3.78
	(0.868-1.40)	(1.14-1.85)	(1.35-2.21)	(1.59-2.75)	(1.77-3.17)	(1.93-3.62)	(2.07-4.11)	(2.27-4.78)	(2.43-5.29)
60-min	1.44	1.91	2.29	2.81	3.22	3.65	4.09	4.70	5.18
	(1.14-1.84)	(1.51-2.45)	(1.80-2.94)	(2.14-3.70)	(2.39-4.28)	(2.62-4.91)	(2.81-5.60)	(3.11-6.54)	(3.33-7.25)
2-hr	1.78	2.38	2.86	3.53	4.05	4.60	5.17	5.96	6.58
	(1.43-2.26)	(1.90-3.02)	(2.27-3.64)	(2.71-4.61)	(3.04-5.33)	(3.33-6.14)	(3.60-7.02)	(3.98-8.22)	(4.28-9.13)
3-hr	2.01	2.71	3.27	4.05	4.67	5.32	5.99	6.92	7.66
	(1.62-2.54)	(2.18-3.42)	(2.61-4.14)	(3.13-5.26)	(3.53-6.11)	(3.88-7.06)	(4.19-8.09)	(4.65-9.50)	(5.00-10.6)
6-hr	2.43	3.31	4.01	4.99	5.77	6.59	7.44	8.62	9.56
	(1.98-3.03)	(2.68-4.13)	(3.23-5.01)	(3.90-6.41)	(4.40-7.47)	(4.85-8.65)	(5.25-9.95)	(5.85-11.7)	(6.30-13.1)
12-hr	2.88	3.92	4.76	5.93	6.86	7.84	8.85	10.3	11.4
	(2.37-3.55)	(3.21-4.84)	(3.88-5.89)	(4.68-7.54)	(5.29-8.79)	(5.83-10.2)	(6.31-11.7)	(7.03-13.8)	(7.57-15.4)
24-hr	3.36	4.53	5.46	6.77	7.82	8.91	10.0	11.6	12.9
	(2.79-4.09)	(3.75-5.52)	(4.50-6.68)	(5.40-8.51)	(6.08-9.90)	(6.69-11.5)	(7.23-13.1)	(8.04-15.5)	(8.65-17.2)

Rainfall estimates for certain durations and ARIs

PF tabular

PF graphical

Supplementary information

🖹 Print Page

	PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.402	0.471	0.586	0.686	0.828	0.943	1.06	1.19	1.35	1.49
	(0.319-0.516)	(0.373-0.604)	(0.463-0.753)	(0.539-0.883)	(0.631-1.09)	(0.700-1.25)	(0.761-1.43)	(0.815-1.62)	(0.895-1.88)	(0.956-2.08)
10-min	0.589	0.689	0.858	1.00	1.21	1.38	1.55	1.74	1.98	2.18
	(0.467-0.755)	(0.546-0.884)	(0.678-1.10)	(0.789-1.29)	(0.924-1.60)	(1.03-1.83)	(1.11-2.09)	(1.19-2.38)	(1.31-2.76)	(1.40-3.05)
15-min	0.718	0.840	1.05	1.23	1.48	1.68	1.90	2.12	2.42	2.66
	(0.570-0.921)	(0.666-1.08)	(0.827-1.34)	(0.962-1.58)	(1.13-1.95)	(1.25-2.24)	(1.36-2.55)	(1.46-2.90)	(1.60-3.37)	(1.71-3.72)
30-min	1.01	1.18	1.48	1.73	2.10	2.39	2.69	3.00	3.44	3.78
	(0.800-1.29)	(0.937-1.52)	(1.17-1.90)	(1.36-2.23)	(1.60-2.77)	(1.77-3.17)	(1.93-3.62)	(2.07-4.11)	(2.27-4.78)	(2.43-5.29)
60-min	1.32	1.56	1.96	2.31	2.82	3.23	3.65	4.09	4.70	5.18
	(1.05-1.69)	(1.24-2.00)	(1.55-2.52)	(1.82-2.98)	(2.15-3.73)	(2.40-4.29)	(2.62-4.92)	(2.81-5.60)	(3.11-6.54)	(3.33-7.25)
2-hr	1.63	1.93	2.45	2.90	3.54	4.06	4.60	5.17	5.96	6.58
	(1.31-2.07)	(1.55-2.45)	(1.95-3.11)	(2.30-3.69)	(2.73-4.63)	(3.05-5.35)	(3.34-6.15)	(3.60-7.02)	(3.98-8.22)	(4.28-9.13)
3-hr	1.84	2.19	2.79	3.31	4.07	4.68	5.32	5.99	6.92	7.66
	(1.48-2.32)	(1.76-2.76)	(2.24-3.52)	(2.64-4.19)	(3.15-5.29)	(3.53-6.13)	(3.88-7.06)	(4.19-8.09)	(4.65-9.50)	(5.00-10.6)
6-hr	2.22	2.65	3.40	4.06	5.01	5.78	6.59	7.44	8.62	9.56
	(1.81-2.76)	(2.16-3.31)	(2.76-4.25)	(3.27-5.08)	(3.92-6.45)	(4.41-7.49)	(4.85-8.66)	(5.25-9.95)	(5.85-11.7)	(6.30-13.1)
12-hr	2.62	3.15	4.04	4.82	5.96	6.88	7.84	8.85	10.3	11.4
	(2.16-3.23)	(2.58-3.87)	(3.31-4.99)	(3.93-5.97)	(4.71-7.59)	(5.30-8.81)	(5.83-10.2)	(6.31-11.7)	(7.03-13.8)	(7.57-15.4)
24-hr	3.07	3.65	4.66	5.53	6.80	7.83	8.91	10.0	11.6	12.9
	(2.55-3.74)	(3.03-4.45)	(3.85-5.68)	(4.55-6.76)	(5.43-8.56)	(6.09-9.92)	(6.69-11.5)	(7.23-13.1)	(8.04-15.5)	(8.65-17.2)

100-year, 24-hour rainfall OLD: TP-40

100-year, 24-hour rainfall

NEW: Atlas 14

100-year, 24-hour rainfall for Kansas City area

NEW: Atlas 14

Comparison of Old and New Estimates of 100-Year Rainfall Depths Lee's Summit (NE Scruggs Road & Blackwell Road)

	100-yr de	Percent	
Duration	5600	New	change
5 min	0.85	1.05	23.5%
10 min	1.42	1.53	7.6%
15 min	1.82	1.87	2.7%
30 min	2.68	2.63	-1.8%
60 min	3.57	3.52	-1.4%
2 hr	4.34	4.41	1.6%
3 hr	4.79	5.10	6.5%
6 hr	5.73	6.41	11.9%
12 hr	6.80	7.86	15.6%
24 hr	7.72	9.28	20.2%

Problems

Rainfall frequency information in Section 5600 is outdated.

Atlas 14 estimates: few durations; excessive spatial variation

Solution

New Atlas 14-based rainfall depth and intensity tables and equations by county: Buchanan, Cass, Clay, Jackson, Johnson, Leavenworth, Miami, Platte, Ray & Wyandotte

RAINFALL DEPTH TABLE JACKSON COUNTY, MISSOURI

This table contains average rainfall depths in inches.

DURATION		ANNUA	L EXCEEDA	NCE PROB	ABILITY		
(H:M)	50%	20%	10%	4%	2%	1%	
0:05	0.44	0.58	0.68	0.83	0.94	1.05	
0:06	0.49	0.64	0.76	0.92	1.04	1.17	
0:07	0.54	0.70	0.83	1.00	1.13	1.27	
0:08	0.58	0.75	0.89	1.07	1.22	1.37	
0:09	0.61	0.80	0.95	1.14	1.30	1.46	
0:10	0.65	0.85	1.00	1.21	1.37	1.54	
0:11	0.68	0.89	1.05	1.27	1.44	1.61	
0:12	0.71	0.93	1.09	1.32	1.50	1.69	
0:13	0.74	0.96	1.14	1.38	1.56	1.75	
0:14	0.77	1.00	1.18	1.43	1.62	1.82	
0:15	0.79	1.03	1.22	1.47	1.67	1.88	
0:16	0.82	1.07	1.26	1.52	1.73	1.94	
0:17	0.84	1.10	1.30	1.57	1.78	2.00	
0:18	0.87	1.13	1.34	1.62	1.84	2.06	
0:19	0.89	1.16	1.38	1.66	1.89	2.12	
0:20	0.92	1.20	1.41	1.71	1.94	2.17	

Lag Time and Time of Concentration

Objective

- Reliable T_L and T_C relationships for KC-area urban watersheds
- Must account for channel condition (enclosed/paved vs. natural)

<u>Approach</u>

- Determine lag times for KC-area urban watersheds from ALERT data
- Develop equation for T_L the accounts for relevant watershed characteristics
- Calibrate T_{L} equation with KC-area data
- T_C = 5/3 T_L

30 gaged watersheds

Sizes: 113 ac to 11 mi²

Lag times: 6 min to 2 hr

Relevant watershed characteristics

- A = drainage area
- L = length of longest flow path
- S = average slope of longest flow path
- R_c = channel development ratio (% enclosed or paved)
- R_i = impervious area ratio (impervious area / total area)

$$W = A/L = average width of watershed$$

Calibrated lag-time equation for urban watersheds in KC area

$$T_{L} = 0.0112 \left[\frac{L (1 - 0.75 R_{c})}{\sqrt{S}} \right]^{0.87} [W (1 + 2.0 R_{i})]^{-0.26}$$

Rational Method in Section 5600

Q = K C i A	AEP	К
whore	≤ 10%	1.0
WHELE	4%	1.1
$C = 0.3 + 0.6 \cdot R_i$	2%	1.2
R _i = impervious fraction	1%	1.25

C = area-weighted average of 0.3 for pervious surfaces and 0.9 for impervious surfaces. K factor effectively increases composite C for AEP < 10%

Objective

Calibrate frequency-dependent C value (K·C in Section 5600) for KC-area pervious surfaces (urban green space and undeveloped land)

<u>Approach</u>

- Regional flood-frequency analysis of 28 USGS-gaged watersheds in KC area
- Calibrated C to match discharge estimates from regional regression equations
- Used NOAA Atlas 14 rainfall estimates

K·C for undeveloped land in the KC area

	K∙C	
	Calibrated with	Section
AEP	study-area data	5600
50%	0.30	0.30
20%	0.42	0.30
10%	0.48	0.30
4%	0.55	0.33
2%	0.59	0.36
1%	0.63	0.375

<u>Calibration of K·C for AEP = 10%</u>

Recommended changes to rational method in Section 5600

- Omit K factor from rational equation
- For impervious surfaces, retain C = 0.9
- For pervious surfaces, use these frequency-dependent C values:

AEP	50%	20%	10%	4%	2%	1%
С	0.30	0.42	0.48	0.55	0.59	0.63

Runoff Curve Numbers in Section 5600

Section 5600 specifies a CN value of 74 for all pervious surfaces in KC area.

Objective

Calibrate frequency-dependent CN values for pervious surfaces in KC area

<u>Approach</u>

- Regional flood-frequency analysis of 28 USGS-gaged watersheds in KC area
- Calibrated CN to match discharge estimates from regional regression equations
- Used NOAA Atlas 14 rainfall estimates of 24-hour rainfall in NRCS Type II storm

Average CN values for undeveloped land in KC area, calibrated for peak flow:

AEP	50%	20%	10%	4%	2%	1%
CN	71	72	71	69	68	67

These values are lower than expected.

Why?

Recommended changes to CN values in Section 5600

None. The specified CN value of 74 for pervious surfaces appears to be appropriately conservative for all frequencies.

Summary of Recommendations

- Adopt new county rainfall tables based on NOAA Atlas 14
- Adopt new calibrated equations for lag time and time of concentration
- Adopt calibrated frequency-dependent rational C values for pervious surfaces
- No change to specified CN values